Assignment 1: Question 1

Acknowledgments. This question was completed only with the teachings from CS courses here at uWaterloo.

Asymptotics

Prove or disprove each of the following statements.

(a) For any constant b > 0, the function $f : n \mapsto 1 + b + b^2 + b^3 + \dots + b^n$ satisfies

$$f(n) = \begin{cases} \Theta(b^n) & \text{if } b > 1\\ \Theta(1) & \text{if } b \le 1. \end{cases}$$

Solution. Since f(n) is a geometric series, we can express it as $\sum_{i=1}^{n} b^{i} = \frac{1-b^{N}}{1-b} = \frac{b^{n}-1}{b-1}$ Using this:

When b=1: $\lim n \to \infty \frac{\frac{b^n - 1}{b^n}}{b^n} = \frac{b^n - 1}{b^{n+1} - b}$, which, by :'Hopital's rule = $1 \div b$. Since $01 \div b\infty$, we have a $\theta bound$.

(b) For every pair of functions $f, g: \mathbb{Z}^+ \to \mathbb{R}^{\geq 1}$ that satisfy $f = \Theta(g)$, the functions $F: n \mapsto 2^{f(n)}$ and $G: n \mapsto 2^{g(n)}$ also satisfy $F = \Theta(G)$.

Solution. (ENTER YOUR SOLUTION HERE.)

(c) For every pair of functions $f, g: \mathbb{Z}^+ \to \mathbb{R}^{\geq 1}$ that satisfy f = o(g), the functions $F: n \mapsto 2^{f(n)}$ and $G: n \mapsto 2^{g(n)}$ also satisfy F = o(G).

Solution. (ENTER YOUR SOLUTION HERE.)