
Tareef Dedhar
20621325

Assignment 1: Question 3

Acknowledgments. I have completed this question with no outside sources.

Testing primality [10 marks]

Analyze the time complexity of the following pseudocode in terms of n using big-O notation. For
this analysis, each operation on integers (including multiplication and squaring) takes constant
time.

Algorithm 1: IsPrime(n)

j ← 2;
while j2 ≤ n do

k ← 2;
while j ∗ k ≤ n do

if j ∗ k = n then
return False;

k ← k + 1;

j ← j + 1;

return True;

Solution. We shall analyze the algorithm in order, by scope blocks. First, we assign j the initial
value of 2. This takes constant time. Then, we have a loop. This loop iterates on j, and if we
reduce j2 ≤ n to j ≤

√
n, and notice that j increments one at a time, we can see this loop will

iterate
√
n times in the worst case.

As for what we are doing
√
n times, we have another loop, from k=2 to j*k≤n (by 1 each time)

in the worst case. Since j is at least 2, in the worst case, this loop will iterate n/2 times. This loop
performs an if check and multiplication, which are constant time operations, so the inner loop is
O(n).

So, since we are looping
√
n times, and in each of those loops entering another loop of O(n),

our total worst-case runtime is O(n
√
n).

1


