1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- \documentclass[11pt]{article}
- \usepackage{amsthm,amsmath,amsfonts,amssymb}
- \usepackage[ruled,noline,noend]{algorithm2e}
- \usepackage[margin=1in]{geometry}
- \usepackage{enumerate}
- %%% Update the following commands with your name, ID, and acknowledgments.
- \newcommand{\YourName}{REPLACE WITH YOUR NAME}
- \newcommand{\YourStudentID}{REPLACE WITH ID NUMBER}
- \newcommand{\YourAck}{REPLACE this text with a full acknowledgement of all sources (people you discussed the question with and/or online/text sources you consulted) used while completing this question. If you completed the question without consulting any sources, say so here explicitly.}
- \newenvironment{solution}{\paragraph{Solution.}}{}
- \title{
- \vspace{-0.8in} \normalsize
- \begin{flushright} \YourName \\ \YourStudentID \end{flushright}
- \rule{\textwidth}{.5pt}\\[0.4cm] \huge Assignment 1: Question 2 \\
- \rule{\textwidth}{2pt}
- \vspace{-1in}
- }
- \date{}
- \begin{document}
- \maketitle
- \paragraph{Acknowledgments.} \YourAck
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Solving recurrences}
- Solve the following recurrence relations to obtain a closed-form big-$\Theta$ expression for $T(n)$.
- In each question, assume $T(c)$ is bounded by a constant for any small constant $c$.
- \begin{enumerate}[(a)]
- \item $T(n) = 9\,T(\frac{n}{3}) + n^2$
- \begin{solution}
- (ENTER YOUR SOLUTION HERE.)
- \end{solution}
- \item $T(n) = 4\,T(\frac{n}{4}) + n \log n$
- \begin{solution}
- (ENTER YOUR SOLUTION HERE.)
- \end{solution}
- \item $T(n) = T(\frac{n}{4}) + T(\frac{3n}{4}) + n$
- \begin{solution}
- (ENTER YOUR SOLUTION HERE.)
- \end{solution}
- \item $T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$ \\
- \emph{Hint.} The correct expression is somewhere between $\Omega(n)$ and $O(n \log n)$.
- \begin{solution}
- (ENTER YOUR SOLUTION HERE.)
- \end{solution}
- \end{enumerate}
- \end{document}
|