소스 검색

log-scale on tsp now

tarfeef101 6 년 전
부모
커밋
2102cddd7d
5개의 변경된 파일141개의 추가작업 그리고 9개의 파일을 삭제
  1. BIN
      a1/graph.pdf
  2. 8 8
      a1/sudoku.py
  3. 1 1
      a1/tsp.py
  4. 132 0
      a1/tsp_testing.py
  5. BIN
      a1/tsph.pdf

BIN
a1/graph.pdf


+ 8 - 8
a1/sudoku.py

@@ -345,9 +345,9 @@ def main():
     cverages = []
     
     for i in range(1, 72):
-        avgA = 0
+        #avgA = 0
         avgB = 0
-        avgC = 0
+        #avgC = 0
         for j in range(1, 11):
             filepath = "sudoku_problems/" + str(i) + "/" + str(j) + ".sd"
             
@@ -360,18 +360,18 @@ def main():
             for l in board:
                 board[board.index(l)] = list(map(lambda x: int(x), l.split()))
             
-            avgA += naive(copy.deepcopy(board));print(i, j)
+            #avgA += naive(copy.deepcopy(board));print(i, j)
             avgB += forward(copy.deepcopy(board));print(i, j)
-            avgC += heuristic(copy.deepcopy(board));print(i, j)
+            #avgC += heuristic(copy.deepcopy(board));print(i, j)
             
-        averages.append(avgA / 10.0)
+        #averages.append(avgA / 10.0)
         bverages.append(avgB / 10.0)
-        cverages.append(avgC / 10.0)
+        #cverages.append(avgC / 10.0)
         
     figure, axes = plt.subplots(1, 1, True)
-    axes.plot(range(1, 72), averages, label='Naive Algorithm')
+    #axes.plot(range(1, 72), averages, label='Naive Algorithm')
     axes.plot(range(1, 72), bverages, label='Forward-Checking Algorithm')
-    axes.plot(range(1, 72), cverages, label='Heuristics')
+    #axes.plot(range(1, 72), cverages, label='Heuristics')
     axes.legend()
     plt.xlabel("Number of Initial Valued Filled In")
     plt.ylabel("Average Number of Variable Assignments in 10 Runs")

+ 1 - 1
a1/tsp.py

@@ -123,7 +123,7 @@ def main():
         averages.append(average / 10.0)
     
     figure, axes = plt.subplots(1, 1, True)
-    axes.plot(range(1, 17), averages, label='TSP Solver (Heuristic)')
+    axes.semilogy(range(1, 17), averages, label='TSP Solver (Heuristic)')
     axes.legend()
     plt.xlabel("Number of Cities")
     plt.ylabel("Average Number of Nodes Generated in 10 Runs")

+ 132 - 0
a1/tsp_testing.py

@@ -0,0 +1,132 @@
+import sys
+import copy
+import math
+from heapq import heappush, heappop
+from random import randint
+import matplotlib.pyplot as plt
+
+distances = []
+n = 0
+
+# returns hueristic value
+def heuristic(source, target, dist):
+    #return 0
+    for i in range(0, min(n * 2, n ** 2)):
+        if (dist <= distances[i]):
+            return 0
+    return dist
+
+
+# returns weight(distance) between 2 vertices
+def weight(city1, city2):
+    return math.sqrt((city1[1] - city2[1]) ** 2 + (city1[2] - city2[2]) ** 2)
+
+
+# returns if going to city i from curnode is okay
+def valid(curnode, cities, i):
+    # can't revisit a city
+    if (i in curnode[2]):
+        return False
+    # if curnode hasn't visited everything else and we are going to the gaol
+    elif (len(curnode[2]) != (len(cities) - 1) and i == (len(cities) - 1)):
+        return False
+    else:
+        return True
+
+
+# returns the count of child states. updates frontier
+def explore(curnode, frontier, cities):
+    children = 0
+    
+    for i in range(1, len(cities)):
+        # can we go here?
+        if (valid(curnode, cities, i)):
+            children += 1
+            # add to frontier
+            dist = weight(curnode[1], cities[i])
+            metric = dist + heuristic(curnode[1], cities[i], dist)
+            heappush(frontier, [curnode[0] + metric, cities[i], copy.deepcopy(curnode[2])])
+    
+    return children
+
+
+# A* solver for TSP
+def solve(frontier, cities):
+    # number of child states
+    newnodes = 0
+    curnode = heappop(frontier)
+    
+    # while we are not on the goal node
+    while (curnode[1] != cities[-1]):
+        newnodes += explore(curnode, frontier, cities)
+        curnode = heappop(frontier)
+        curnode[2].append(cities.index(curnode[1]))
+        
+    return newnodes + 1
+
+
+def tsp(filename):
+    # import map
+    #prob = "instance_10.txt"
+    prob = filename
+    with open(prob) as file:
+        prob = file.read().splitlines()
+
+    n = int(prob[0])
+    cities = prob[1:]
+    counter = 0
+    # convert to list of list of ints
+    for l in cities:
+        temp = l.split()
+        temp[1] = int(temp[1])
+        temp[2] = int(temp[2])
+        temp.append(counter)
+        counter += 1
+        cities[cities.index(l)] = temp
+        
+    distances = []
+    
+    for i in range(0, len(cities) - 1):
+        for j in range(i, len(cities)):
+            dist = weight(cities[i], cities[j])
+            distances.append(dist)
+                
+    distances.sort()
+    
+    # add in goal state
+    cities.append(copy.deepcopy(cities[0]))
+    cities[-1][0] = "Goal"
+    
+    # create frontier
+    frontier = []
+    # add start state, list of visited, and distancesofar to frontier
+    heappush(frontier, [0, cities[0], [0]])
+
+    result = solve(frontier, cities)
+    print(result)
+    return result
+
+
+def main():
+    global distances
+    global n
+    plt.ioff()
+    plt.switch_backend('agg')
+    averages = []
+    
+    for i in range(1, 10):
+        average = 0
+        for j in range(1, 11):
+            filepath = "tsp_problems/" + str(i) + "/instance_" + str(j) + ".txt"
+            average += tsp(filepath)
+            
+        averages.append(average / 10.0)
+    
+    figure, axes = plt.subplots(1, 1, True)
+    axes.semilogy(range(1, 10), averages, label='TSP Solver (Heuristic)')
+    axes.legend()
+    plt.xlabel("Number of Cities")
+    plt.ylabel("Average Number of Nodes Generated in 10 Runs")
+    plt.savefig("tsph.pdf")
+    
+main()

BIN
a1/tsph.pdf