|
@@ -190,18 +190,20 @@ def bad_weather(delta, temp):
|
|
|
|
|
|
|
|
|
# decrements temp by the option specified by opt: 1 is linear, 2 is logarithmic, 3 is exponential
|
|
|
-def colder(temp, opt):
|
|
|
+def colder(temp, opt, count):
|
|
|
if (opt == 1):
|
|
|
- return temp - 25
|
|
|
+ return temp - 15
|
|
|
if (opt == 2):
|
|
|
return temp - (math.log(temp) + 2)
|
|
|
else:
|
|
|
- return temp - math.exp(-0.001 * temp)
|
|
|
+ return 500000 * math.exp(-0.0005 * count) - 1
|
|
|
|
|
|
|
|
|
# returns the hill climbing solution using simulated annealing w/ schedule opt
|
|
|
def beck_weathers(cities, opt):
|
|
|
- temp = 1000
|
|
|
+ start = time.process_time()
|
|
|
+ temp = 500000
|
|
|
+ count = 1
|
|
|
curcost = length(cities)
|
|
|
curpath = copy.deepcopy(cities)
|
|
|
|
|
@@ -212,9 +214,11 @@ def beck_weathers(cities, opt):
|
|
|
if (delta > 0 or bad_weather(delta, temp)):
|
|
|
curcost = child[1]
|
|
|
curpath = child[0]
|
|
|
- temp = colder(temp, opt)
|
|
|
-
|
|
|
- return(curpath, curcost)
|
|
|
+ temp = colder(temp, opt, count)
|
|
|
+ count += 1
|
|
|
+
|
|
|
+ end = time.process_time()
|
|
|
+ return(curpath, curcost, end - start)
|
|
|
|
|
|
|
|
|
# solves the inputted TSP problem (filepath), using algorithm algo
|
|
@@ -524,12 +528,75 @@ def reinhold_messner_graph():
|
|
|
pdf.savefig()
|
|
|
plt.close()
|
|
|
|
|
|
+
|
|
|
+# function to generate PDF results for basic hill climbing w/ annealing
|
|
|
+def beck_weathers_graph():
|
|
|
+ plt.ioff()
|
|
|
+ plt.switch_backend('agg')
|
|
|
+ solution_times = []
|
|
|
+ solution_scores = []
|
|
|
+
|
|
|
+ # num of cities
|
|
|
+ for i in range(14, 17):
|
|
|
+ times = []
|
|
|
+ solution_times.append(times)
|
|
|
+ scores = []
|
|
|
+ solution_scores.append(scores)
|
|
|
+
|
|
|
+ # num of instances
|
|
|
+ for j in range(1, 3):
|
|
|
+ filepath = "tsp_problems/" + str(i) + "/instance_" + str(j) + ".txt"
|
|
|
+ prob_times = []
|
|
|
+ times.append(prob_times)
|
|
|
+ prob_scores = []
|
|
|
+ scores.append(prob_scores)
|
|
|
+
|
|
|
+ # diff schedules
|
|
|
+ for k in range(1, 4):
|
|
|
+ ktimes = []
|
|
|
+ prob_times.append(ktimes)
|
|
|
+ kscores = []
|
|
|
+ prob_scores.append(kscores)
|
|
|
+
|
|
|
+ runtime = 0
|
|
|
+ qual = 0
|
|
|
+ # run problem 100 times
|
|
|
+ for num in range(0, 100):
|
|
|
+ # path, cost, runtime returned
|
|
|
+ result = solver(filepath, 4, k)
|
|
|
+ runtime += result[2]
|
|
|
+ qual += (result[1] / neos[i][j - 1])
|
|
|
+
|
|
|
+ ktimes.append(runtime / 100.0)
|
|
|
+ kscores.append(qual / 100.0)
|
|
|
+
|
|
|
+ with PdfPages("hill_climbing_annealing.pdf") as pdf:
|
|
|
+ figure, axes = plt.subplots(3, 2, True)
|
|
|
+ figure.suptitle("Hill Climbing - Annealing")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ for j in range(0, 2):
|
|
|
+ axes[i][j].plot(range(1, 4), solution_times[i][j], color = 'b')
|
|
|
+ axes[i][j].set_title("Problem Instance w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i][j].set_xlabel("Annealing Schedule " + str(j + 1))
|
|
|
+ axes[i][j].set_ylabel("Time Taken", color = 'b')
|
|
|
+ axis_twin = axes[i][j].twinx()
|
|
|
+ axis_twin.plot(range(1, 4), solution_scores[i][j], color = 'r')
|
|
|
+ axis_twin.set_ylabel("Solution Quality", color = 'r')
|
|
|
+ #axes[i].legend()
|
|
|
+ #axis_twin.legend()
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
|
|
|
|
|
|
# main function that will call needed graphing function(s)
|
|
|
def main():
|
|
|
#sir_edmund_hillary_graph()
|
|
|
#tenzing_norgay_graph()
|
|
|
- reinhold_messner_graph()
|
|
|
+ #reinhold_messner_graph()
|
|
|
+ beck_weathers_graph()
|
|
|
|
|
|
main()
|