|
@@ -142,7 +142,7 @@ def tenzing_norgay(cities):
|
|
|
curpath = child[0]
|
|
|
tabu.add(get_hashable(curpath))
|
|
|
continue
|
|
|
- if (child[1] == curcost and laterals < n):
|
|
|
+ if (child[1] == curcost and laterals < len(cities)):
|
|
|
laterals += 1
|
|
|
curcost = child[1]
|
|
|
curpath = child[0]
|
|
@@ -250,10 +250,10 @@ def solver(problem, algo, *x):
|
|
|
result = beck_weathers(cities, x)
|
|
|
|
|
|
return result
|
|
|
-
|
|
|
|
|
|
-# main function to get aggregate data and graph stuff
|
|
|
-def main():
|
|
|
+
|
|
|
+# function to generate PDF results for basic hill climbing
|
|
|
+def sir_edmund_hillary_graph():
|
|
|
plt.ioff()
|
|
|
plt.switch_backend('agg')
|
|
|
solution_steps = []
|
|
@@ -354,6 +354,113 @@ def main():
|
|
|
pdf.savefig()
|
|
|
plt.close()
|
|
|
|
|
|
- #plt.savefig("hill_climbing.pdf")
|
|
|
+
|
|
|
+# function to generate PDF results for basic hill climbing
|
|
|
+def tenzing_norgay_graph():
|
|
|
+ plt.ioff()
|
|
|
+ plt.switch_backend('agg')
|
|
|
+ solution_steps = []
|
|
|
+ solution_scores = []
|
|
|
+ good_sol_counts = []
|
|
|
+
|
|
|
+ for i in range(14, 17):
|
|
|
+ steps = []
|
|
|
+ solution_steps.append(steps)
|
|
|
+ scores = []
|
|
|
+ solution_scores.append(scores)
|
|
|
+ good_sols = []
|
|
|
+ good_sol_counts.append(good_sols)
|
|
|
+
|
|
|
+ for j in range(1, 11):
|
|
|
+ filepath = "tsp_problems/" + str(i) + "/instance_" + str(j) + ".txt"
|
|
|
+ prob_steps = 0
|
|
|
+ prob_scores = 0
|
|
|
+ good_solutions = 0
|
|
|
+ # run problem 100 times
|
|
|
+ for k in range(0, 100):
|
|
|
+ # path, cost, steps returned
|
|
|
+ result = solver(filepath, 1)
|
|
|
+ prob_steps += result[2]
|
|
|
+ prob_scores += (result[1] / neos[i][j - 1])
|
|
|
+ if (result[1] <= neos[i][j- 1]):
|
|
|
+ good_solutions += 1
|
|
|
+
|
|
|
+ steps.append(prob_steps / 100.0)
|
|
|
+ scores.append(prob_scores / 100.0)
|
|
|
+ good_sols.append(good_solutions)
|
|
|
+
|
|
|
+ with PdfPages("hill_climbing_tabu.pdf") as pdf:
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing - Tabu")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ axes[i].plot(range(1, 11), solution_steps[i], label = "Steps to Solution", color = 'b')
|
|
|
+ axes[i].set_xlabel("Problem Instance w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i].set_ylabel("Steps Taken", color = 'b')
|
|
|
+ axis_twin = axes[i].twinx()
|
|
|
+ axis_twin.plot(range(1, 11), solution_scores[i], label = "Solution Quality", color = 'r')
|
|
|
+ axis_twin.set_ylabel("Solution Quality", color = 'r')
|
|
|
+ #axes[i].legend()
|
|
|
+ #axis_twin.legend()
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing - Tabu Cont.")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ axes[i].plot(range(1, 11), good_sol_counts[i], color = 'b')
|
|
|
+ axes[i].set_xlabel("Problem Instance w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i].set_ylabel("% of runs <= NEOS", color = 'b')
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+ # now we can aggregate and replace the old values
|
|
|
+ for i in range(0, 3):
|
|
|
+ tempsteps = 0
|
|
|
+ tempqual = 0
|
|
|
+ tempgood = 0
|
|
|
+ for j in range(0, 10):
|
|
|
+ tempsteps += solution_steps[i][j]
|
|
|
+ tempqual += solution_scores[i][j]
|
|
|
+ tempgood += good_sol_counts[i][j]
|
|
|
+ solution_steps[i] = tempsteps / 10.0
|
|
|
+ solution_scores[i] = tempqual / 10.0
|
|
|
+ good_sol_counts[i] = tempgood / 10.0
|
|
|
+
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing - Tabu Aggegated (Averages)")
|
|
|
+
|
|
|
+ axes[0].plot(range(14, 17), solution_steps, color = 'b')
|
|
|
+ axes[0].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[0].set_ylabel("Steps Used", color = 'b')
|
|
|
+ axes[0].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ axes[1].plot(range(14, 17), solution_scores, color = 'b')
|
|
|
+ axes[1].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[1].set_ylabel("Solution Quality", color = 'b')
|
|
|
+ axes[1].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ axes[2].plot(range(14, 17), good_sol_counts, color = 'b')
|
|
|
+ axes[2].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[2].set_ylabel("% of runs <= NEOS", color = 'b')
|
|
|
+ axes[2].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+
|
|
|
+# main function that will call needed graphing function(s)
|
|
|
+def main():
|
|
|
+ #sir_edmund_hillary_graph()
|
|
|
+ tenzing_norgay_graph()
|
|
|
|
|
|
main()
|