|
@@ -0,0 +1,602 @@
|
|
|
+import sys
|
|
|
+import copy
|
|
|
+import math
|
|
|
+import time
|
|
|
+from heapq import heappush, heappop
|
|
|
+from random import shuffle, sample, randint, SystemRandom
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+from matplotlib.backends.backend_pdf import PdfPages
|
|
|
+
|
|
|
+# globals to contain reference solutions
|
|
|
+neos14 = [318, 324, 336, 319, 351, 311, 272, 361, 274, 322]
|
|
|
+neos15 = [313, 318, 281, 324, 378, 291, 348, 342, 353, 325]
|
|
|
+neos16 = [404, 353, 361, 349, 358, 344, 373, 355, 243, 330]
|
|
|
+neos36 = 464
|
|
|
+neos = {14: neos14, 15: neos15, 16: neos16, 36: neos36}
|
|
|
+
|
|
|
+# returns a shuffled version of the cities list while maintaining the first & last elements
|
|
|
+def rand_order(cities):
|
|
|
+ # shitty variable name
|
|
|
+ suburbs = cities[1:-1]
|
|
|
+ shuffle(suburbs)
|
|
|
+ suburbs.insert(0, cities[0])
|
|
|
+ suburbs.append(cities[-1])
|
|
|
+ return suburbs
|
|
|
+
|
|
|
+
|
|
|
+# returns distance between 2 vertices
|
|
|
+def dist(city1, city2):
|
|
|
+ return math.sqrt(int((city1[2]) - int(city2[2])) ** 2 + (int(city1[3]) - int(city2[3])) ** 2)
|
|
|
+
|
|
|
+
|
|
|
+# returns total cost/distance of a tour (list of cities)
|
|
|
+def length(cities):
|
|
|
+ sum = 0
|
|
|
+ for i in range(len(cities) - 1):
|
|
|
+ sum += dist(cities[i], cities[i+1])
|
|
|
+
|
|
|
+ return sum
|
|
|
+
|
|
|
+
|
|
|
+# returns the best ordered child state of a state (hill climbing, basic) & its cost
|
|
|
+def best_child(cities, cost):
|
|
|
+ bestorder = cities
|
|
|
+ bestcost = cost
|
|
|
+
|
|
|
+ for i in range(1, len(cities) - 2):
|
|
|
+ for j in range(i, len(cities) - 1):
|
|
|
+ temporder = copy.deepcopy(cities)
|
|
|
+ tempcity = temporder[i]
|
|
|
+ temporder[i] = temporder[j]
|
|
|
+ temporder[j] = tempcity
|
|
|
+ templen = length(temporder)
|
|
|
+ if (templen < cost):
|
|
|
+ bestorder = temporder
|
|
|
+ bestcost = templen
|
|
|
+
|
|
|
+ return (bestorder, bestcost)
|
|
|
+
|
|
|
+
|
|
|
+# returns the best child using tabu
|
|
|
+# returns the best ordered child state of a state (hill climbing, basic) & its cost
|
|
|
+def bester_child(cities, cost, tabu):
|
|
|
+ bestorder = cities
|
|
|
+ bestcost = cost
|
|
|
+
|
|
|
+ for i in range(1, len(cities) - 2):
|
|
|
+ for j in range(i, len(cities) - 1):
|
|
|
+ temporder = copy.deepcopy(cities)
|
|
|
+ tempcity = temporder[i]
|
|
|
+ temporder[i] = temporder[j]
|
|
|
+ temporder[j] = tempcity
|
|
|
+
|
|
|
+ if (get_hashable(temporder) in tabu):
|
|
|
+ continue
|
|
|
+
|
|
|
+ templen = length(temporder)
|
|
|
+ if (templen < cost):
|
|
|
+ bestorder = temporder
|
|
|
+ bestcost = templen
|
|
|
+
|
|
|
+ return (bestorder, bestcost)
|
|
|
+
|
|
|
+
|
|
|
+# returns a random child for simulated annealing search
|
|
|
+# returns the ordering and the cost of it
|
|
|
+def random_child(cities):
|
|
|
+ #i = randbelow(len(cities) - 3) + 1
|
|
|
+ i = int(randint(1, len(cities) - 2))
|
|
|
+ j = i
|
|
|
+
|
|
|
+ while (j == i):
|
|
|
+ #j = randbelow(len(cities) - 3) + 1
|
|
|
+ j = int(randint(1, len(cities) - 2))
|
|
|
+
|
|
|
+ temporder = copy.deepcopy(cities)
|
|
|
+ tempcity = temporder[i]
|
|
|
+ temporder[i] = temporder[j]
|
|
|
+ temporder[j] = tempcity
|
|
|
+
|
|
|
+ return(temporder, length(temporder))
|
|
|
+
|
|
|
+
|
|
|
+# returns the basic hill climbing solution for a given input
|
|
|
+def sir_edmund_hillary(cities):
|
|
|
+ curcost = length(cities)
|
|
|
+ curpath = copy.deepcopy(cities)
|
|
|
+ steps = 0
|
|
|
+
|
|
|
+ # keep trying things til we can no longer try things
|
|
|
+ while(1):
|
|
|
+ steps += 1
|
|
|
+ child = best_child(curpath, curcost)
|
|
|
+ if (child[1] < curcost):
|
|
|
+ curcost = child[1]
|
|
|
+ curpath = child[0]
|
|
|
+ continue
|
|
|
+ break
|
|
|
+
|
|
|
+ return(curpath, curcost, steps)
|
|
|
+
|
|
|
+
|
|
|
+# retuns a tuple of the indices (ordered) in a list of cities
|
|
|
+def get_hashable(cities):
|
|
|
+ newlist = []
|
|
|
+ for i in range(1, len(cities) - 1):
|
|
|
+ newlist.append(cities[i][1])
|
|
|
+
|
|
|
+ return tuple(newlist)
|
|
|
+
|
|
|
+
|
|
|
+# returns the hill climbing solution w/tabu & sideways moves for a given input
|
|
|
+def tenzing_norgay(cities):
|
|
|
+ curcost = length(cities)
|
|
|
+ curpath = copy.deepcopy(cities)
|
|
|
+ tabu = {get_hashable(cities)}
|
|
|
+ laterals = 0
|
|
|
+ steps = 0
|
|
|
+
|
|
|
+ # keep trying things til we can no longer try things
|
|
|
+ while(1):
|
|
|
+ steps += 1
|
|
|
+ child = bester_child(curpath, curcost, tabu)
|
|
|
+ if (child[1] < curcost):
|
|
|
+ curcost = child[1]
|
|
|
+ curpath = child[0]
|
|
|
+ tabu.add(get_hashable(curpath))
|
|
|
+ continue
|
|
|
+ if (child[1] == curcost and laterals < len(cities)):
|
|
|
+ laterals += 1
|
|
|
+ curcost = child[1]
|
|
|
+ curpath = child[0]
|
|
|
+ tabu.add(get_hashable(curpath))
|
|
|
+ continue
|
|
|
+ break
|
|
|
+
|
|
|
+ return(curpath, curcost, steps)
|
|
|
+
|
|
|
+
|
|
|
+# returns the hill climbing solution w/ x random restarts for a given input
|
|
|
+# if you want x restarts, call with x + 1
|
|
|
+def reinhold_messner(cities, x):
|
|
|
+ start = time.process_time()
|
|
|
+ curcost = length(cities)
|
|
|
+ curpath = copy.deepcopy(cities)
|
|
|
+ bestcost = length(cities)
|
|
|
+ bestpath = copy.deepcopy(cities)
|
|
|
+
|
|
|
+ # keep trying things til we can no longer try things
|
|
|
+ while(x):
|
|
|
+ child = best_child(curpath, curcost)
|
|
|
+ if (child[1] < curcost):
|
|
|
+ curcost = child[1]
|
|
|
+ curpath = child[0]
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ if (curcost < bestcost):
|
|
|
+ bestcost = curcost
|
|
|
+ bestpath = copy.deepcopy(curpath)
|
|
|
+ curpath = rand_order(cities)
|
|
|
+ curcost = length(curpath)
|
|
|
+ x -= 1
|
|
|
+
|
|
|
+ end = time.process_time()
|
|
|
+ return(bestpath, bestcost, end - start)
|
|
|
+
|
|
|
+
|
|
|
+# returns true or false randomly, based on the distribution e^(delta / temp)
|
|
|
+def bad_weather(delta, temp):
|
|
|
+ return SystemRandom().random() < math.exp(delta / temp)
|
|
|
+
|
|
|
+
|
|
|
+# decrements temp by the option specified by opt: 1 is linear, 2 is logarithmic, 3 is exponential
|
|
|
+def colder(temp, opt, count):
|
|
|
+ if (opt == 1):
|
|
|
+ return temp - 15
|
|
|
+ if (opt == 2):
|
|
|
+ return temp - (math.log(temp) + 2)
|
|
|
+ else:
|
|
|
+ return 500000 * math.exp(-0.0005 * count) - 1
|
|
|
+
|
|
|
+
|
|
|
+# returns the hill climbing solution using simulated annealing w/ schedule opt
|
|
|
+def beck_weathers(cities, opt):
|
|
|
+ start = time.process_time()
|
|
|
+ temp = 500000
|
|
|
+ count = 1
|
|
|
+ curcost = length(cities)
|
|
|
+ curpath = copy.deepcopy(cities)
|
|
|
+
|
|
|
+ # keep trying things til we can no longer try things
|
|
|
+ while(temp > 0):
|
|
|
+ child = random_child(curpath)
|
|
|
+ delta = curcost - child[1]
|
|
|
+ if (delta > 0 or bad_weather(delta, temp)):
|
|
|
+ curcost = child[1]
|
|
|
+ curpath = child[0]
|
|
|
+ temp = colder(temp, opt, count)
|
|
|
+ count += 1
|
|
|
+
|
|
|
+ end = time.process_time()
|
|
|
+ return(curpath, curcost, end - start)
|
|
|
+
|
|
|
+
|
|
|
+# solves the inputted TSP problem (filepath), using algorithm algo
|
|
|
+# 1 = hill climbing, 2 = tabu/sideways allowed, 3 = random restarts, 4 = annealing
|
|
|
+# x represents the optional parameters for 3 and 4
|
|
|
+# specifically, the # of restarts and the annealing schedule, respectively
|
|
|
+def solver(problem, algo, x=None):
|
|
|
+ # import map
|
|
|
+ prob = problem
|
|
|
+ with open(prob) as file:
|
|
|
+ prob = file.read().splitlines()
|
|
|
+
|
|
|
+ global n
|
|
|
+ cities = prob[1:]
|
|
|
+ counter = 0
|
|
|
+ # convert to list of list of ints
|
|
|
+ # original format is: letter, coord, coord
|
|
|
+ # output format is: iD#, letter, coord, coord
|
|
|
+ for l in cities:
|
|
|
+ temp = l.split()
|
|
|
+ temp[1] = int(temp[1])
|
|
|
+ temp[2] = int(temp[2])
|
|
|
+ temp.insert(0, counter)
|
|
|
+ counter += 1
|
|
|
+ cities[cities.index(l)] = temp
|
|
|
+
|
|
|
+ # add in goal state
|
|
|
+ cities.append(cities[0])
|
|
|
+ input = rand_order(cities)
|
|
|
+
|
|
|
+ if (algo == 1):
|
|
|
+ result = sir_edmund_hillary(cities)
|
|
|
+ elif (algo == 2):
|
|
|
+ result = tenzing_norgay(cities)
|
|
|
+ elif (algo == 3):
|
|
|
+ result = reinhold_messner(cities, x)
|
|
|
+ else:
|
|
|
+ result = beck_weathers(cities, x)
|
|
|
+
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+# function to generate PDF results for basic hill climbing
|
|
|
+def sir_edmund_hillary_graph():
|
|
|
+ plt.ioff()
|
|
|
+ plt.switch_backend('agg')
|
|
|
+ solution_steps = []
|
|
|
+ solution_scores = []
|
|
|
+ good_sol_counts = []
|
|
|
+
|
|
|
+ for i in range(14, 17):
|
|
|
+ steps = []
|
|
|
+ solution_steps.append(steps)
|
|
|
+ scores = []
|
|
|
+ solution_scores.append(scores)
|
|
|
+ good_sols = []
|
|
|
+ good_sol_counts.append(good_sols)
|
|
|
+
|
|
|
+ for j in range(1, 11):
|
|
|
+ filepath = "tsp_problems/" + str(i) + "/instance_" + str(j) + ".txt"
|
|
|
+ prob_steps = 0
|
|
|
+ prob_scores = 0
|
|
|
+ good_solutions = 0
|
|
|
+ # run problem 100 times
|
|
|
+ for k in range(0, 100):
|
|
|
+ # path, cost, steps returned
|
|
|
+ result = solver(filepath, 1)
|
|
|
+ prob_steps += result[2]
|
|
|
+ prob_scores += (result[1] / neos[i][j - 1])
|
|
|
+ if (result[1] <= neos[i][j- 1]):
|
|
|
+ good_solutions += 1
|
|
|
+
|
|
|
+ steps.append(prob_steps / 100.0)
|
|
|
+ scores.append(prob_scores / 100.0)
|
|
|
+ good_sols.append(good_solutions)
|
|
|
+
|
|
|
+ with PdfPages("hill_climbing.pdf") as pdf:
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ axes[i].plot(range(1, 11), solution_steps[i], label = "Steps to Solution", color = 'b')
|
|
|
+ axes[i].set_xlabel("Problem Instance w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i].set_ylabel("Steps Taken", color = 'b')
|
|
|
+ axis_twin = axes[i].twinx()
|
|
|
+ axis_twin.plot(range(1, 11), solution_scores[i], label = "Solution Quality", color = 'r')
|
|
|
+ axis_twin.set_ylabel("Solution Quality", color = 'r')
|
|
|
+ #axes[i].legend()
|
|
|
+ #axis_twin.legend()
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing Cont.")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ axes[i].plot(range(1, 11), good_sol_counts[i], color = 'b')
|
|
|
+ axes[i].set_xlabel("Problem Instance w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i].set_ylabel("% of runs <= NEOS", color = 'b')
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+ # now we can aggregate and replace the old values
|
|
|
+ for i in range(0, 3):
|
|
|
+ tempsteps = 0
|
|
|
+ tempqual = 0
|
|
|
+ tempgood = 0
|
|
|
+ for j in range(0, 10):
|
|
|
+ tempsteps += solution_steps[i][j]
|
|
|
+ tempqual += solution_scores[i][j]
|
|
|
+ tempgood += good_sol_counts[i][j]
|
|
|
+ solution_steps[i] = tempsteps / 10.0
|
|
|
+ solution_scores[i] = tempqual / 10.0
|
|
|
+ good_sol_counts[i] = tempgood / 10.0
|
|
|
+
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing Aggegated (Averages)")
|
|
|
+
|
|
|
+ axes[0].plot(range(14, 17), solution_steps, color = 'b')
|
|
|
+ axes[0].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[0].set_ylabel("Steps Used", color = 'b')
|
|
|
+ axes[0].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ axes[1].plot(range(14, 17), solution_scores, color = 'b')
|
|
|
+ axes[1].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[1].set_ylabel("Solution Quality", color = 'b')
|
|
|
+ axes[1].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ axes[2].plot(range(14, 17), good_sol_counts, color = 'b')
|
|
|
+ axes[2].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[2].set_ylabel("% of runs <= NEOS", color = 'b')
|
|
|
+ axes[2].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+
|
|
|
+# function to generate PDF results for basic hill climbing w/ tabu and sideways moves
|
|
|
+def tenzing_norgay_graph():
|
|
|
+ plt.ioff()
|
|
|
+ plt.switch_backend('agg')
|
|
|
+ solution_steps = []
|
|
|
+ solution_scores = []
|
|
|
+ good_sol_counts = []
|
|
|
+
|
|
|
+ for i in range(14, 17):
|
|
|
+ steps = []
|
|
|
+ solution_steps.append(steps)
|
|
|
+ scores = []
|
|
|
+ solution_scores.append(scores)
|
|
|
+ good_sols = []
|
|
|
+ good_sol_counts.append(good_sols)
|
|
|
+
|
|
|
+ for j in range(1, 11):
|
|
|
+ filepath = "tsp_problems/" + str(i) + "/instance_" + str(j) + ".txt"
|
|
|
+ prob_steps = 0
|
|
|
+ prob_scores = 0
|
|
|
+ good_solutions = 0
|
|
|
+ # run problem 100 times
|
|
|
+ for k in range(0, 100):
|
|
|
+ # path, cost, steps returned
|
|
|
+ result = solver(filepath, 2)
|
|
|
+ prob_steps += result[2]
|
|
|
+ prob_scores += (result[1] / neos[i][j - 1])
|
|
|
+ if (result[1] <= neos[i][j- 1]):
|
|
|
+ good_solutions += 1
|
|
|
+
|
|
|
+ steps.append(prob_steps / 100.0)
|
|
|
+ scores.append(prob_scores / 100.0)
|
|
|
+ good_sols.append(good_solutions)
|
|
|
+
|
|
|
+ with PdfPages("hill_climbing_tabu.pdf") as pdf:
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing - Tabu")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ axes[i].plot(range(1, 11), solution_steps[i], label = "Steps to Solution", color = 'b')
|
|
|
+ axes[i].set_xlabel("Problem Instance w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i].set_ylabel("Steps Taken", color = 'b')
|
|
|
+ axis_twin = axes[i].twinx()
|
|
|
+ axis_twin.plot(range(1, 11), solution_scores[i], label = "Solution Quality", color = 'r')
|
|
|
+ axis_twin.set_ylabel("Solution Quality", color = 'r')
|
|
|
+ #axes[i].legend()
|
|
|
+ #axis_twin.legend()
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing - Tabu Cont.")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ axes[i].plot(range(1, 11), good_sol_counts[i], color = 'b')
|
|
|
+ axes[i].set_xlabel("Problem Instance w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i].set_ylabel("% of runs <= NEOS", color = 'b')
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+ # now we can aggregate and replace the old values
|
|
|
+ for i in range(0, 3):
|
|
|
+ tempsteps = 0
|
|
|
+ tempqual = 0
|
|
|
+ tempgood = 0
|
|
|
+ for j in range(0, 10):
|
|
|
+ tempsteps += solution_steps[i][j]
|
|
|
+ tempqual += solution_scores[i][j]
|
|
|
+ tempgood += good_sol_counts[i][j]
|
|
|
+ solution_steps[i] = tempsteps / 10.0
|
|
|
+ solution_scores[i] = tempqual / 10.0
|
|
|
+ good_sol_counts[i] = tempgood / 10.0
|
|
|
+
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing - Tabu Aggegated (Averages)")
|
|
|
+
|
|
|
+ axes[0].plot(range(14, 17), solution_steps, color = 'b')
|
|
|
+ axes[0].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[0].set_ylabel("Steps Used", color = 'b')
|
|
|
+ axes[0].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ axes[1].plot(range(14, 17), solution_scores, color = 'b')
|
|
|
+ axes[1].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[1].set_ylabel("Solution Quality", color = 'b')
|
|
|
+ axes[1].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ axes[2].plot(range(14, 17), good_sol_counts, color = 'b')
|
|
|
+ axes[2].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[2].set_ylabel("% of runs <= NEOS", color = 'b')
|
|
|
+ axes[2].set_xticks([14, 15, 16])
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+
|
|
|
+# function to generate PDF results for basic hill climbing w/ random restarts
|
|
|
+def reinhold_messner_graph():
|
|
|
+ plt.ioff()
|
|
|
+ plt.switch_backend('agg')
|
|
|
+ solution_times = []
|
|
|
+ solution_scores = []
|
|
|
+
|
|
|
+ # num of cities
|
|
|
+ for i in range(14, 17):
|
|
|
+ times = []
|
|
|
+ solution_times.append(times)
|
|
|
+ scores = []
|
|
|
+ solution_scores.append(scores)
|
|
|
+
|
|
|
+ # num of instances
|
|
|
+ for j in range(1, 3):
|
|
|
+ filepath = "tsp_problems/" + str(i) + "/instance_" + str(j) + ".txt"
|
|
|
+ prob_times = []
|
|
|
+ times.append(prob_times)
|
|
|
+ prob_scores = []
|
|
|
+ scores.append(prob_scores)
|
|
|
+
|
|
|
+ # num of repeats
|
|
|
+ for k in range(1, 16):
|
|
|
+ ktimes = []
|
|
|
+ prob_times.append(ktimes)
|
|
|
+ kscores = []
|
|
|
+ prob_scores.append(kscores)
|
|
|
+
|
|
|
+ runtime = 0
|
|
|
+ qual = 0
|
|
|
+ # run problem 100 times
|
|
|
+ for num in range(0, 100):
|
|
|
+ # path, cost, runtime returned
|
|
|
+ result = solver(filepath, 3, k)
|
|
|
+ runtime += result[2]
|
|
|
+ qual += (result[1] / neos[i][j - 1])
|
|
|
+
|
|
|
+ ktimes.append(runtime / 100.0)
|
|
|
+ kscores.append(qual / 100.0)
|
|
|
+
|
|
|
+ with PdfPages("hill_climbing_restarts.pdf") as pdf:
|
|
|
+ figure, axes = plt.subplots(3, 2, True)
|
|
|
+ figure.suptitle("Hill Climbing - Restarts")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ for j in range(0, 2):
|
|
|
+ axes[i][j].plot(range(1, 16), solution_times[i][j], color = 'b')
|
|
|
+ axes[i][j].set_xlabel("Problem Instance " + str(j + 1) + " w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i][j].set_ylabel("Time Taken (s)", color = 'b')
|
|
|
+ axis_twin = axes[i][j].twinx()
|
|
|
+ axis_twin.plot(range(1, 16), solution_scores[i][j], color = 'r')
|
|
|
+ axis_twin.set_ylabel("Solution Quality", color = 'r')
|
|
|
+ #axes[i].legend()
|
|
|
+ #axis_twin.legend()
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.92)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+
|
|
|
+# function to generate PDF results for basic hill climbing w/ annealing
|
|
|
+def beck_weathers_graph():
|
|
|
+ plt.ioff()
|
|
|
+ plt.switch_backend('agg')
|
|
|
+ solution_times = []
|
|
|
+ solution_scores = []
|
|
|
+
|
|
|
+ # num of cities
|
|
|
+ for i in range(14, 17):
|
|
|
+ times = []
|
|
|
+ solution_times.append(times)
|
|
|
+ scores = []
|
|
|
+ solution_scores.append(scores)
|
|
|
+
|
|
|
+ # num of instances
|
|
|
+ for j in range(1, 3):
|
|
|
+ filepath = "tsp_problems/" + str(i) + "/instance_" + str(j) + ".txt"
|
|
|
+ prob_times = []
|
|
|
+ times.append(prob_times)
|
|
|
+ prob_scores = []
|
|
|
+ scores.append(prob_scores)
|
|
|
+
|
|
|
+ # diff schedules
|
|
|
+ for k in range(1, 4):
|
|
|
+ ktimes = []
|
|
|
+ prob_times.append(ktimes)
|
|
|
+ kscores = []
|
|
|
+ prob_scores.append(kscores)
|
|
|
+
|
|
|
+ runtime = 0
|
|
|
+ qual = 0
|
|
|
+ # run problem 100 times
|
|
|
+ for num in range(0, 100):
|
|
|
+ # path, cost, runtime returned
|
|
|
+ result = solver(filepath, 4, k)
|
|
|
+ runtime += result[2]
|
|
|
+ qual += (result[1] / neos[i][j - 1])
|
|
|
+
|
|
|
+ ktimes.append(runtime / 100.0)
|
|
|
+ kscores.append(qual / 100.0)
|
|
|
+
|
|
|
+ with PdfPages("hill_climbing_annealing.pdf") as pdf:
|
|
|
+ figure, axes = plt.subplots(3, 2, True)
|
|
|
+ figure.suptitle("Hill Climbing - Annealing")
|
|
|
+
|
|
|
+ for i in range(0, 3):
|
|
|
+ for j in range(0, 2):
|
|
|
+ axes[i][j].plot(range(1, 4), solution_times[i][j], color = 'b')
|
|
|
+ axes[i][j].set_title("Problem Instance " + str(j + 1) + " w/ " + str(i + 14) + " cities")
|
|
|
+ axes[i][j].set_xlabel("Annealing Schedule")
|
|
|
+ axes[i][j].set_ylabel("Time Taken (s)", color = 'b')
|
|
|
+ axis_twin = axes[i][j].twinx()
|
|
|
+ axis_twin.plot(range(1, 4), solution_scores[i][j], color = 'r')
|
|
|
+ axis_twin.set_ylabel("Solution Quality", color = 'r')
|
|
|
+ #axes[i].legend()
|
|
|
+ #axis_twin.legend()
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.subplots_adjust(top=0.85)
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+
|
|
|
+# main function that will call needed graphing function(s)
|
|
|
+def main():
|
|
|
+ #sir_edmund_hillary_graph()
|
|
|
+ #tenzing_norgay_graph()
|
|
|
+ #reinhold_messner_graph()
|
|
|
+ beck_weathers_graph()
|
|
|
+
|
|
|
+main()
|