|
@@ -315,6 +315,41 @@ def main():
|
|
|
plt.tight_layout()
|
|
|
pdf.savefig()
|
|
|
plt.close()
|
|
|
+
|
|
|
+ # now we can aggregate and replace the old values
|
|
|
+ for i in range(0, 3):
|
|
|
+ tempsteps = 0
|
|
|
+ tempqual = 0
|
|
|
+ tempgood = 0
|
|
|
+ for j in range(0, 10):
|
|
|
+ tempsteps += solution_steps[i][j]
|
|
|
+ tempqual += solution_scores[i][j]
|
|
|
+ tempgood += good_sol_counts[i][j]
|
|
|
+ solution_steps[i] = tempsteps / 10.0
|
|
|
+ solution_scores[i] = tempqual / 10.0
|
|
|
+ good_sol_counts[i] = tempgood / 10.0
|
|
|
+
|
|
|
+ figure, axes = plt.subplots(3, 1, True)
|
|
|
+ figure.suptitle("Hill Climbing Aggegated")
|
|
|
+
|
|
|
+ axes[0].plot(range(14, 17), solution_steps, color = 'b')
|
|
|
+ axes[0].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[0].set_ylabel("Steps Used", color = 'b')
|
|
|
+ axes[0].title.set_text('Avg Steps of Algorithm')
|
|
|
+
|
|
|
+ axes[1].plot(range(14, 17), solution_scores, color = 'b')
|
|
|
+ axes[1].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[1].set_ylabel("Solution Quality", color = 'b')
|
|
|
+ axes[1].title.set_text('Avg Quality of Solutions')
|
|
|
+
|
|
|
+ axes[2].plot(range(14, 17), good_sol_counts, color = 'b')
|
|
|
+ axes[2].set_xlabel("Problem Instances w/ x cities")
|
|
|
+ axes[2].set_ylabel("% of runs <= NEOS", color = 'b')
|
|
|
+ axes[2].title.set_text('Avg % of Algorithms Equal or Better than NEOS')
|
|
|
+
|
|
|
+ plt.tight_layout()
|
|
|
+ pdf.savefig()
|
|
|
+ plt.close()
|
|
|
|
|
|
#plt.savefig("hill_climbing.pdf")
|
|
|
|